Joachim Mohr   Mathematik Musik Delphi
Viele Musikinstrumente und vor allem Sängerinnen und Sänger können feine Tonhöhennuancen von Intervallen abweichend von der gleichstufigen Stimmung realisieren. Sie können durch genaues Aufeinanderhören reine Oktaven, Quinten, Quarten, Terzen usw. verwirklichen. Je besser dies gelingt, umso besser ist der Klang. Sie intonieren in der reinen Stimmung.

Die reine Stimmung

Folgende Vorkenntnisse sind erforderlich: Cent, pythagoreisches und syntonisches Komma.
  1. Cent: In der Musiktheorie wird die Größe von Intervallen in Cent angegeben. Ein Halbton umfasst 100 Cent, eine Oktave 1200 Cent. Wichtig! Die große Terz umfasst gleichstufig 400 Cent (klingt rau), und rein (Frequenzverhältnis 5/4) 386 Cent. Dies spielt bei der reinen Intonation eine herausragende Rolle.
  2. Pythagoreisches Komma: Geht man 12 reine Quinten (Frequenzverhältnis 3/2) aufwärts und 7 Oktaven zurück, so ist der Unterschied zum Anfangston das pythagoreisches Komma (23,5 Cent). Deshalb sind unsere Klaviere heutzutage gleichstufig gestimmt. Hier sind die reinen Quinten im Quintenzirkel um 1/12 des pythagoreischen Kommas verkleinert und damit ist die Geschichte für viele Musiker zu Ende. Dabei hat diese Praxis eine lange Entwicklungszeit hinter sich. Mitteltönigen und wohltemperierten Stimmungen spielten jahrhunderte lang eine große Rolle.
  3. Syntonisches Komma: Geht man vier reine Quinten hoch - zum Beispiel c g d a e und zwei Oktaven zurück, so erhält man das Intervall c e, das sich von der reinen Terz c ,e (e mit "Tiefkomma" davor) um das syntonische Komma (21,5 Cent) unterscheidet.

Vorkenntnisse auffrischen: Das pythagoreische und syntonische Komma

Alles, was Sie über die Eulerschreibweise wissen müssen: Ein vorangestelltes "Tiefkomma", "Hochkomma" erniedrigt bzw. erhöht den Ton um ein syntonisches Komma
Die reine C-Dur Tonleiter schreibt sich in der Eulerschen Schreibweise
c d ,e f g ,a ,h c. Hier haben die Dreiklänge
c-,e-g
f-,a-c
g-,h,d
reine große Terzen (Frequenzverhältnis 5/4), reine kleine Terzen (6/5) und reine Quinten (3/2).
Alle Durtonleitern schreiben sich nach dem selben Schema:
3. 6. und 7. Ton ein syntonisches Komma tiefer. Beispiele:

Ton 1 2 ,3 4 5 ,6 ,7 8
...
D-Dur: d e ,fis g a ,h ,cis d
G-Dur: g a ,h c d ,e ,fis g
C-Dur: c d ,e f g ,a ,h c
F-Dur: f g ,a b c ,d ,e f
B-Dur: b c ,d es f ,g ,a b
...
Der Molldreiklang c-es-g enthält die unreine große Terz es-g. Wenn wir das es um ein syntonisches Komma erhöhen, wird der Dreiklang rein. Für das erhöhte es schreiben wir 'es ("Hochkomma es"). Der Ton 'es erklingt also ein syntonisches Komma höher als der Ton es.
Die reine C-moll Tonleiter (c-moll natürlich) schreibt sich dann
c d 'es f g 'as 'b c. Hier haben die Dreiklänge
c-'es-g
f-'as-c
g-'b-d
reine kleine Terzen (6/5), reine große Terzen (5/4) und reine Quinten (3/2).
Alle Molltonleitern schreiben sich nach dem selben Schema:
3. 6. und 7. Ton ein syntonisches Komma höher. Beispiele:
...
Ton      1  2    '3  4  5  '6   '7   8 

g-Moll:  g  a    'b  c  d  'es  'f   g 

f-Moll:  f  g    'as b  c  'des 'es  f 
...
Die Paralleltonart und Gegentonart von C-Dur: 

,a-Moll: ,a ,h   c  ,d ,e   f    g   ,a 

,e-Moll: ,e ,fis g  ,a ,h   c    d   ,e  
In alten Singschulen konnte man mit den theoretischen Verhältnissen der Intervalle wenig anfangen. Die multiplikativen Größenverhältnisse zum Beispiel zwischen den Ganztönen mit den Verhältnissen 9/8 und 10/9 waren zu abstrakt. Seit Guido von Arrezzo (992 bis 1050) kannte man die arithmetische Einteilung. Hier hatte man eine gute Vorstellung der Größen der Intervalle.
Großer Ganzton (c-d) = 9 Teile
Kleiner Ganzton (d-,e) = 8 Teile
Diatonischer Halbton (,e-f) = 5 Teile
Chromatischer Halbton ('b-h oder f-,fis) = 4 Teile
Große Terz (c-,e) = 17 Teile
Quinte (c-g) = 31 Teile
Oktave (c-c') = 53 Teile

Dies stellt die Größenverhältnisse in hervorragender Weise dar. Der Fehler zum exakten Wert liegt in der Größenordnung von einem Schisma (2 Cent).
Die Abstände der Töne der C-Dur-Tonleiter sind den alten Singschulen wohlbekannt:
c   d  ,e   f   g  ,a  ,h   c
  9   8   5   9   8   9   5
Die Oktave hat dann nach Mercator den Abstand von 53 Teilen.

Die Vollkadenz in allen drei Lagen

In f-Dur: f g ,b c ,d ,e f (siehe unten "Modulationen")
vollkadenza.png
rein
gleichstufig

Modulationen

Bekanntlich ändern sich bei Modulationen die Vorzeichen. In reiner Stimmung gibt es aber eine Besonderheit, die die Theorie kompliziert macht.

Zur Einführung ein Klangbeispiel

Modulation von C-Dur nach D-Dur

Die chromatische C-Dur-Tonleiter wird üblicherweise folgendermaßen gestimmt:
c 'des d 'es ,e f 'fis g 'as ,a 'b ,h c. Hier sind folgende Terzen rein: c ,e / 'des f / d ',fis / 'es g / f ,a / g ,h / 'as c und 'b d rein erklingen.
Dann klingt es folgendermaßen:

Da die reine D-Dur-Tonleiter folgende Darstellung hat: d ,fis g a ,h ,cis d, muss man also 'des in ,cis und ,a in a umstimmen. Dann klingt es rein:
Faustregel: Bei einer Modulation in eine Nachbartonart ändern sich zwei Töne, einer davon erkennbar mit Vorzeichenwechsel, der andere geringfügig um ein syntonisches Komma mit der Größe von 22 Cent, etwa ein Fünftel Halbton.

Modulation in die Dominante

Vergleicht man die
C-Dur-Tonleiter c d ,e f g ,a ,h c mit der
G-Dur-Tonleiter g a ,h c d ,e ,fis g, so sieht man:
Das f hat sich mit Vorzeichenwechsel um einen Halbton zu ,fis erhöht, das ,a um ein syntonisches Komma zu a (im Notenbild unsichtbar) erhöht.
Beispiel: Dieselbe Melodie. Einmal in C-Dur, das andere Mal in G-Dur.
In C-Dur hat ,a die Frequenz von 440 Hz, in G-Dur hat a die Frequenz von 445,5 Hz. Diese Melodie bestimmt also schon - unter dem Gesichtspunkt der reinen Stimmung - die Tonart.
Die Melodie in C-Dur: h c ,e g ,a g
1in_c.gif
In G-Dur: h c ,e g a g
1in_c.gif

In G-Dur erklingt der Ton a höher als das ,a in C-Dur.
Spiele ,a in C-Dur (440 Hz) und a in G-Dur (445,5Hz) und beide und zusammen.

Modulation in die Subdominante

Vergleicht man die
C-Dur-Tonleiter c d ,e f g ,a ,h c mit der
F-Dur-Tonleiter f g ,a b c ,d ,e f, so sieht man:
Das h hat sich mit Vorzeichenwechsel um einen Halbton zu b erniedrigt, das d um ein syntonisches Komma zu ,d (im Notenbild unsichtbar) erniedrigt.

Modulation in den Tonikagegenklang

Vergleichen wir jetzt die
C-Dur-Tonleiter c d ,e f g ,a ,h c mit der
e-Moll-Tonleiter ,e fis g ,a ,h c d ,e.
Hier hat sich nur ein Ton geändert: das f zu fis erkennbar mit Vorzeichenwechsel um einen Halbton.

Modulation in die Tonikaparallele

Vergleichen wir nun die
C-Dur-Tonleiter c d ,e f g ,a ,h c mit der
a-Moll--Tonleiter ,a ,h c ,d ,e f g ,a.
Hier hat sich ebenfalls nur ein Ton geändert: das d hat sich um ein syntonisches Komma zu ,d erniedrigt.
Der Akkord auf der 2. Stufe in C-Dur ist deshalb mit ,d zu intonieren: ,d-f-,a. Sonst klingt der Akkord d-f-,a mit unreiner Terz d-f und unreiner Quinte d-,a.

Weiter: Mitteltönige und wohltemperierte Stimmung(en)


Dort wird auch die folgende Tastatur mit 31 Tonhöhen pro Oktave erklärt.
Tastatur reine Stimmung
Intervallberechnungen sind in dieser Darstellung sehr einfach. Beispiel: as und gis unterscheiden sich um das pythagoreische Komma. Da ,gis ein syntonisches Komma tiefer als gis erklingt, hat das Intervall ,gis as eine vernachlässigbare Größe. nämlich:
Schisma = pythagoreisches Komma - syntonisches Komma = 2 Cent.

W3C